Steroidology

Uncover the truth about Anabolic Steroids uses in bodybuilding

MGF an alternatively spliced variant of IGF-1 MGF an alternatively spliced variant of IGF-1
The ischemic stroke is the third leading cause of death in developed countries. The C-terminal peptide of mechano-growth factor (MGF)... MGF an alternatively spliced variant of IGF-1
picture of amber_amps

MGF C-terminal peptide provided very significant protection to the vulnerable neurons.

 

The ischemic stroke is the third leading cause of death in developed countries. The C-terminal peptide of mechano-growth factor (MGF), an alternatively spliced variant of insulin-like growth factor 1 (IGF-1), was found to function independently from the rest of the molecule and showed a neuroprotective effect in vivo and in vitro. In vivo, in a gerbil model of transient brain ischemia, treatment with the synthetic MGF C-terminal peptide provided very significant protection to the vulnerable neurons. In the same model, ischemia evoked increased expression of endogenous MGF in the ischemia-resistant hippocampal neurons, suggesting that the endogenous MGF might have an important neuroprotective function. In an in vitro organotypic hippocampal culture model of neurodegeneration, the synthetic peptide was as potent as the full-length IGF-1 while its effect lasted significantly longer than that of recombinant IGF-1. While two peptides showed an additive effect, the neuroprotective action of the C-terminal MGF was independent from the IGF-1 receptor, indicating a new mode of action for this molecule. Although MGF is known for its regenerative capability in skeletal muscle, our findings demonstrate for the first time a neuroprotective role against ischemia for this specific IGF-1 isoform. Therefore, the C-terminal MGF peptide has a potential to be developed into a therapeutic modality for the prevention of neuronal damage. Dluzniewska J, et al. FASEB J. 2005 Sep 6; [Epub ahead of print]


Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation

The physiological function of a recently cloned splice variant of insulin-like growth factor-I (IGF-I; mechano growth factor (MGF)) was studied using an in vitro cell model. Unlike mature IGF-I, the distinct E domain of MGF inhibits terminal differentiation whilst increasing myoblast proliferation. Blocking the IGF-I receptor with a specific antibody indicated that the function of MGF E domain is mediated via a different receptor. The results provide a basis for localized tissue adaptation and helps explain why loss of muscle mass occurs in the elderly and in dystrophic muscle in which MGF production is markedly affected.

Yang SY, Goldspink G. FEBS Lett. 2002 Jul 3;522(1-3):156-60.

StaffWriter